

17 Dicembre 2015 Smart mobility: il car sharing free floating e la sua evoluzione elettrica - studi RSE Cavicchioli Cristina

Ricerca sul Sistema Energetico — RSE SpA svolge attività di ricerca applicata nel settore elettro-energetico e mette a disposizione del sistema nazionale le competenze e le conoscenze che derivano dalla lunga esperienza e dalla tradizione della ricerca italiana.

È una società per azioni interamente a capitale pubblico, fa parte del Gruppo GSE ed è vigilata dal Ministero dello Sviluppo Economico.

L'organico è costituito da 330 dipendenti distribuiti nelle due sedi di Milano e Piacenza

RSE e l'efficienza energetica

attività di supporto scientifico alle istituzioni centrali (Ministeri, AEEGSI, Confindustria, GSE e controllate, Regioni, Province......) in materia di politiche energetiche e nella pianificazione e realizzazione di piani energetici, valutazione dei certificati bianchi e del conto termico, riqualificazione energetica di edifici

Ricerca sul Sistema Energetico - RSE S.p.A.

Tecnologia

Infrastrutture ricarica e sistema elettrico

Sostenibilità

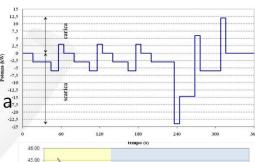
Tecnologia

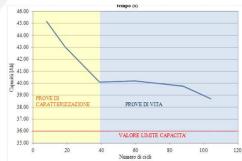
Prove di caratterizzazione di base

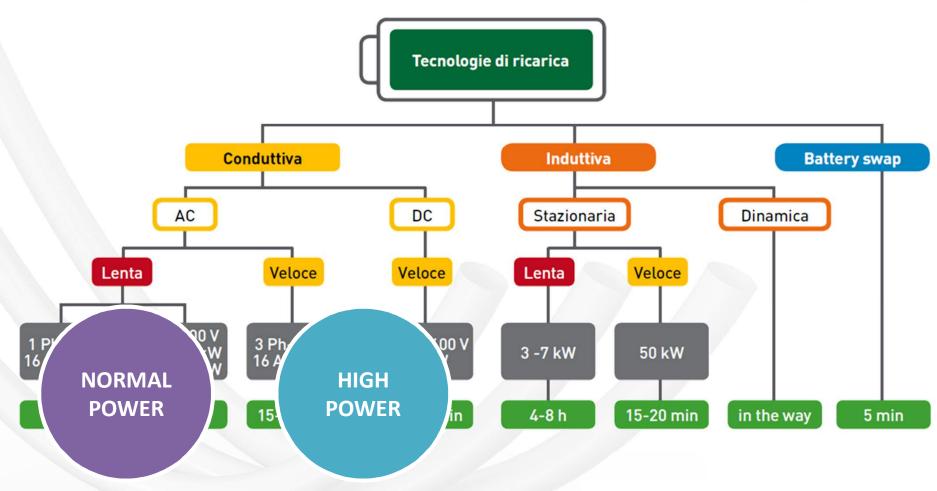
 Misurazione parametri caratteristici delle tecnologie al variare di corrente, temperatura di lavoro

Prove specifiche per applicazione veicolare

- Ciclo per la misura del picco di potenza
- Cicli che simulano il comportamento del sistema a bordo veicolo


Risultati


- **Buone prestazioni** (rendimento energetico, amperorametrico, energia specifica)
- Vita attesa inferiore agli obiettivi minimi ma forte influenza della gestione della batteria da parte del BMS



- FATTORI ABILITANTI LA MOBILITÀ ELETTRICA
- PIANIFICAZIONE INFRASTRUTTURE EFFICIENTI ED EFFICACI
- MODELLAZIONE INTERAZIONE SISTEMA DI RICARICA CON SISTEMA DI DISTRIBUZIONE ELETTRICO

Ricerca sul Sistema Energetico - RSE S.p.A.

- La mobilità elettrica deve in primo luogo rispondere alle esigenze di mobilità
- Occorre porsi dal punto di vista dell'utente ed analizzare i diversi scenari d'uso, dai quali conseguono diverse esigenze in termini di infrastrutture necessarie

Potenziali fruitori dell'infrastruttura di ricarica

- Residenti/cittadini privati
- Flotte aziendali e della Pubblica Amministrazione
- Flotte per il trasporto merci urbano (Delivery)
- Taxi
- Car Sharing (anche Free Floating)
- Turisti e utenti occasionali

Scenari di sosta

- Scenario 1 Sosta prolungata (2-10h)
 - Box, parcheggi privati o condominiali, parcheggi aziendali, parcheggio lungo strada
 - Normale presa elettrica (massimo 2,5 kW)
 - Wall Box (massimo 7 kW) con eventuale gestore dei carichi
 - Colonnine aziendali o pubbliche (massimo 22 kW)
- Scenario 2 Sosta breve (30 minuti-2h)
 - Centri commerciali, cinema e ristoranti, parcheggi pubblici
 - Colonnine (massimo 22-30 kW)
 - Business model di successo: ricarica gratuita
- Scenario 3 Fermata (< 30')
 - Stazione di servizio autostradale o urbana
 - sistemi di ricarica FAST multistandard con potenza maggiore di 50 kW (fino a 160 kVA)

IPOTESI INFRASTRUTTURA AD ACCESSO PUBBLICO EFFICACE

- Infrastruttura basata sulla compresenza e complementarietà di sistemi Normal Power e di sistemi High Power
- Tre localizzazioni prioritarie per ciascuna tecnologia

NORMAL POWER (almeno 7 kW)

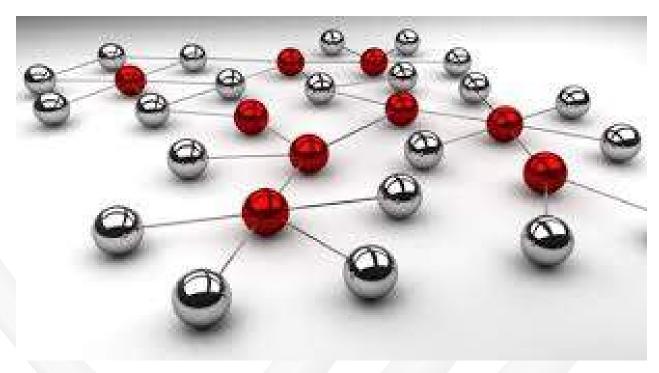
- 1. Lungo strada
- 2. Parcheggi di interscambio
- 3. Luoghi di interesse

HIGH POWER (preferibile 50/43 kW)

- 1. Distributori di carburante
- 2. Stazioni ferroviarie e aeroporti
- 3. Aree di carico/scarico merci

Localizzaione e tipologia di ricarica che meglio rispondono alle esigenze di un territorio.

=> Indicatori per la quantificazione e la localizzazione della domanda di ricarica elettrica (Dati al massimo dettaglio spaziale possibile)


- domanda di mobilità complessiva, attuale e prevista;
- domanda di mobilità elettrica, attuale e prevista;
- indici macroeconomici utili ad identificare la propensione all'acquisto/diffusione di veicoli elettrici;
- indice d'attrazione/feeder di traffico;
- disponibilità di siti per la ricarica domestica, rispetto al numero di veicoli;
- uso del suolo;
- intensità di traffico lungo gli archi stradali;
- densità abitativa.

Variabilità territoriale dei parametri descrittivi la mobilità e la sosta dei veicoli => esigenza tecnica di valutare a livello territoriale locale la modalità più adatta di implementazione dell'infrastruttura pubblica di ricarica (tipologia e tempi di ricarica), per portarla a essere complementare a quella privata.

MOBILITÀ: IL RUOLO DELLO SHARING

LA SHARING ECONOMY E LA SHARING MOBILITY

Collaborative Finance

Shared Information

Shared Creativity

Shared Mobility

Use and re-use of spaces

Accesso condiviso a beni e servizi

- ⇒ Ruolo ICT
- ⇒ New deal nel pensare struttura servizi: cambiare rapidamente la percezione e i comportamenti degli utenti di servizi e dei consumatori di beni

Benefici:

- sviluppo economico
- inclusione sociale
- Formazione
- innovazione tecnologica

Ricerca sul Sistema Energetico - RSE S.p.A.

LA SHARING ECONOMY E LA SHARING MOBILITY

Caso testMilano:


Free floating!!

e•vai>

2001

2015

Ricerca sul Sistema Energetico - RSE S.p.A.

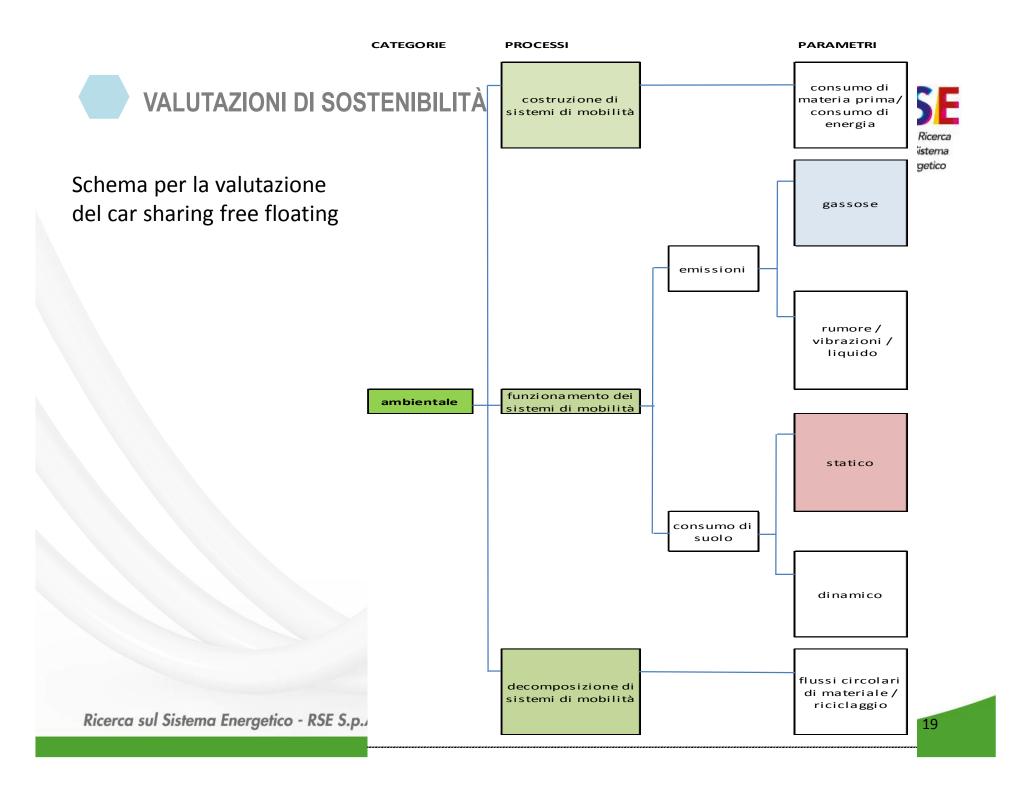
LA SHARING MOBILITY (FF) A MILANO: OGGI

Dati medi:

- Oltre 2000 veicoli
- Percorrenze medie: 6km per utilizzo
- Utilizzo medio: 3 5 utilizzi giornalieri
- Percorso giornaliero medio: 24 km
- 10-20% degli usi sostituisce auto propria

Fattori abilitanti

- Numero auto ?
- Disponibilità auto in punti strategici!



Costruzione di uno schema per la valutazione del car sharing free floating:

- Aspetti metodologici
 - LCA EV
 - Esternalità
- Valutazione indicatori
- Sintesi valutazioni

VALUTAZIONI DI SOSTENIBILITÀ

Veicolo EV: batteria agli ioni di litio LiMn₂O₄ Veicolo ICEV: Euro5 alimentato a benzina.

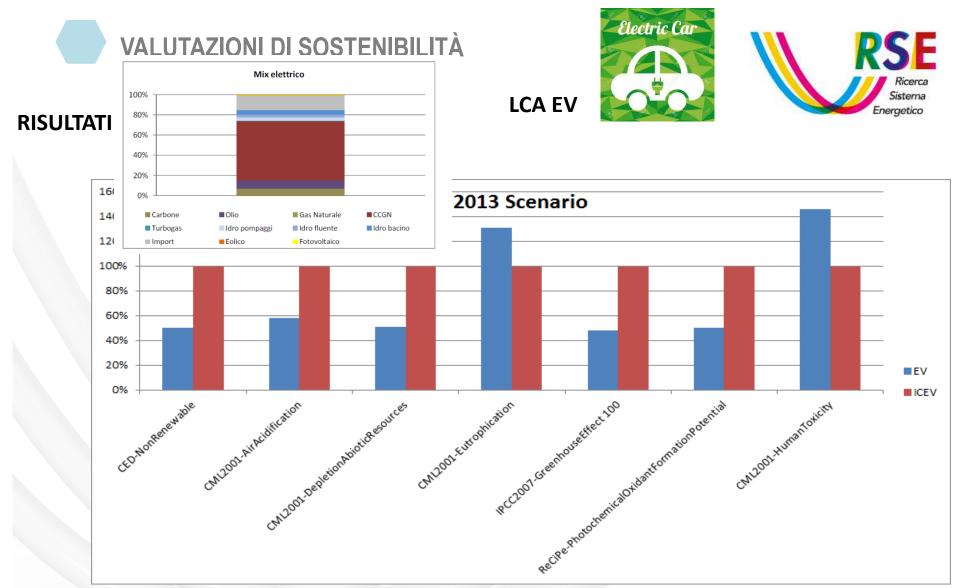
UNITA' FUNZIONALE

150.000 km guidati.

SCENARI 2013 e 2030

CONFINI INDAGINE

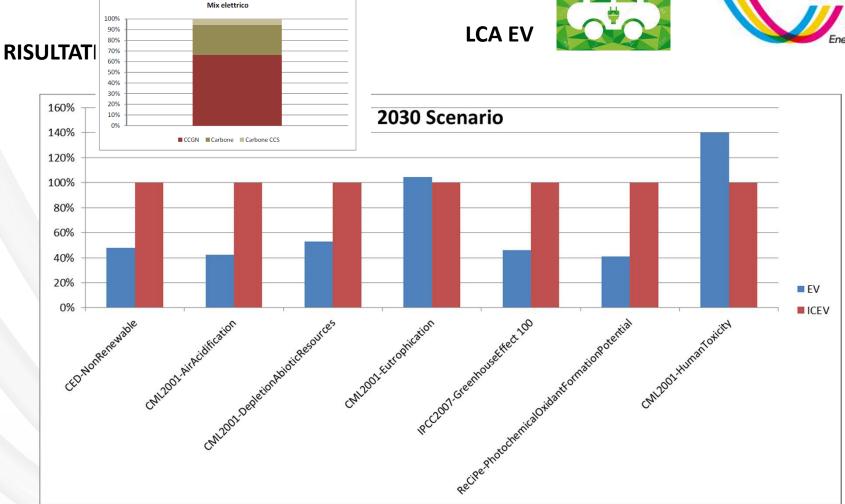
- la costruzione e lo smaltimento del veicolo;
- la costruzione e lo smaltimento della batteria;
- la catena di approvvigionamento del vettore energetico utilizzato per alimentare i veicoli;
- la fase di uso del veicolo.



LCA EV

CATEGORIE DI IMPATTO

Categoria di Impatto	Indicatore	U.M.
Cambiamenti climatici	IPCC Greenhouse Effects (100)–2007	kg CO2 eq
Formazione ossidanti fotochimici	ReCiPe Photochemical Oxidant Formation Potential	kg NMVOC eq
Acidificazione	CML 2001 Acidification (Acidification Potential, European Average)	kg SO2eq
Eutrofizzazione	CML 2001 Eutrophication (Eutrophication Potential, Generic)	kg PO43-eq
Consumo di risorse	CML 2001 Depletion of abiotic resources	kg Sb eq
Tossicità Umana	CML 2001 – Human Toxicity	g 1,4 DCB-eq
Energia Primaria	Cumulative Energy Demand - Fossil	MJeq
	Cumulative Energy Demand - Renewable	MJeq



Life Cycle Impact Assessment: confronto tra gli impatti potenziali del veicolo a benzina e del veicolo elettrico. Scenario 2013.

Life Cycle Impact Assessment: confronto tra gli impatti potenziali del veicolo a benzina e del veicolo elettrico. Scenario 2030.

VALUTAZIONI DI SOSTENIBILITÀ

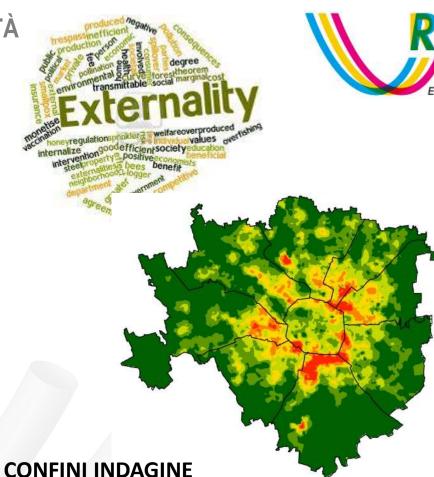
Metodologia NEEDS

INQUINANTI:

NH3, NMVOC, NOX, PM10 e PM2.5, SO2

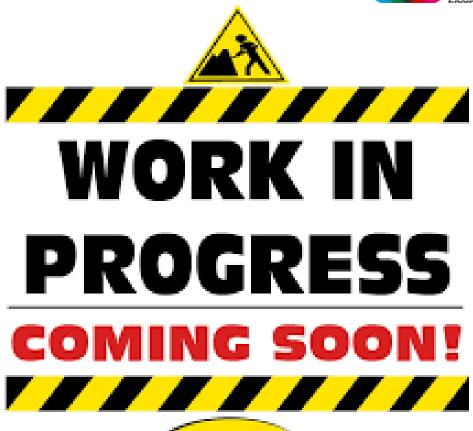
- 8.000 noleggi giornalieri.
- Ciascun noleggio 6 km

AMBITI


SALUTE UMANA, AGRICOLTURA, BIODIVERSITA' MATERIALI.

UNITA' FUNZIONALE

km guidati in sharing


SCENARI 2013 e 2030

- fase di uso del veicolo
- Conversione alimentazione flotte car sharing free floating a Milano

- Valutazione indicatori
- Sintesi valutazioni

cavicchioli@rse-web.it

