Le biomasse

Criticità e prospettive Aldo Abenavoli ITABIA

Biomasse: Definizioni

LA DEFINIZIONE DI BIOMASSE SECONDO LA DIRETTIVA SULLE FER

La proposta di direttiva sulle fonti rinnovabili considera come biomasse.

"la frazione biodegradabile dei prodotti, rifiuti e residui di origine biologica provenienti dalla agricoltura (incluse le sostanze vegetali e animali),dalla silvicoltura e dalle industrie connesse comprese la pesca e l'acquacoltura nonchè la frazione biodegradabile dei rifiuti industriali e urbani."

Destinazione

Le biomasse possono essere destinate alla produzione di

- energia termica(riscaldamento, raffreddamento e teleriscaldamento)
- energia elettrica e cogenerazione
- biocarburanti

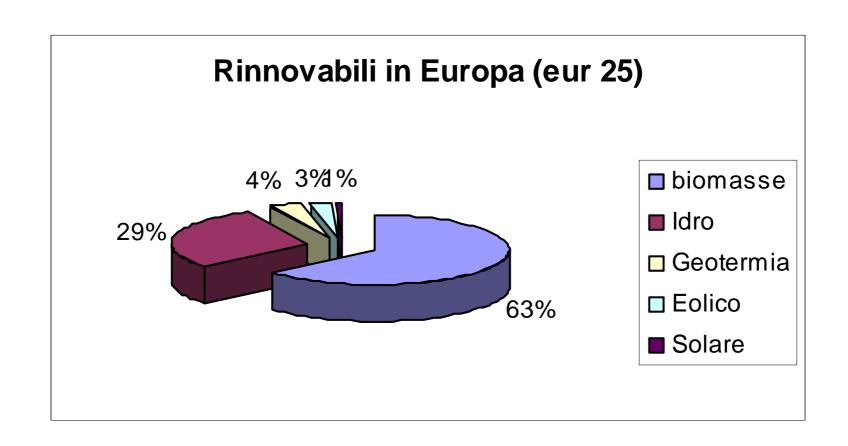
Le biomasse possono essere allo stato

- liquido
- solido
- gassoso

EFFICIENZA CONVERSIONE ENERGIA FINALE

RISCALDAMENTO DOMESTICO	70/80%		
TELERISCALDAMENTO	80%		
BIOELETTRICITA'	15-25%		
COGENERAZIONE	40/60%		
TRIGENERAZIONE	50/70%		

Biomasse: Dati


ENERGIA PRIMARIA PRODOTTA NEL MONDO (Dati 2006)

PETROLIO	34,4%
CARBONE	26,0%
METANO	20,5%
BIOMASSE E RIFIUTI	10,1%
NUCLEARE	6,2%
IDROELETTRICO	2,2%
ALTRE FONTI	0,6%

In alcuni paesi le biomasse sono consumate in percentuali che superano anche il 50%. Questo tuttavia non è indice di virtuosità ma di povertà.

Energia da FER in Italia (Dati Legambiente 2007)

 Idroelettrico 	40%
 Biomassa 	25%
 Rifiuti e biogas 	8%
 Mini idro 	11%
 Geotermia 	9%
Eolico	6%
 Solare 	1%

Produzione lorda degli impianti da fonte rinnovabile in Italia dal 2003 al 2007

GWh	2003	2004	2005	2006	2007	'07 / '06 %
Idrica _	36.669,9	42.337,8	36.066,7	36.994,4	32.815,2	-11,3
0_1	1.455,3	1.731,3	1.525,7	1.520,9	1.415,7	-6,9
1_10 (MW)	5.731,8	7.127,8	6.090,5	6.354,1	5.684,4	-10,5
> 10	29.482,8	33.478,7	28.450,5	29.119,4	25.715,1	-11,7
Eolica	1.458,4	1.846,5	2.343,4	2.970,7	4.034,4	35,8
Solare*	22,6	27,3	31,0	35,0	39,0	11,4
Geotermica	5.340,5	5.437,3	5.324,5	5.527,4	5.569,1	0,8
Biomasse e rifiuti	4.493,0	5.637,2	6.154,8	6.744,6	6.953,7	3,1
- Solidi	3.460,1	4.466,9	4.956,9	5.408,3	5.506,4	1,8
– rifiuti solidi urbani	1.811,9	2.276,6	2.619,7	2.916,6	3.024,9	3,7
– da colture e altri rifiuti agro-industriali	1.648,2	2.190,4	2.337,2	2.491,7	2.481,5	6,6
- Biogas	1.033,0	1.170,2	1.198,0	1.336,3	1.447,3	8,3
– da discariche	910,5	1.038,4	1.052,3	1.176,8	1.247,3	6,0
– da fanghi	2,7	1,2	3,2	3,3	9,0	172,7
– da deiezioni animali	13,2	18,5	25,7	44,7	53,3	19,2
– da colture e altri rifiuti agro-industriali	106,5	112,1	116,8	111,5	137,7	23,5
Totale	47.984,4	55.286,1	49.920,4	52.272,1	49.411,3	-5,5

Disponibilità teorica biomasse

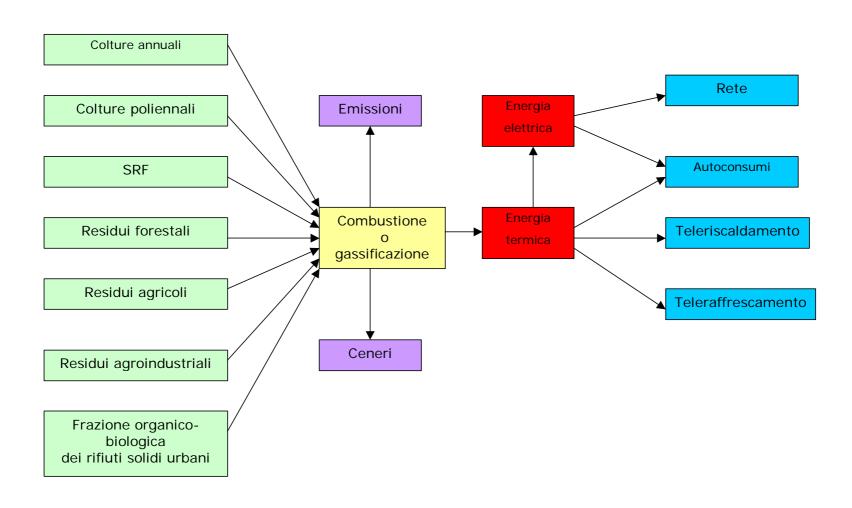
1)RESIDUI	Mtep anno
-Agricoltura	5
-Foreste e industria del legno	4.3
-Rifiuti solidi urbani	0.3
-Allevamenti zootecnici	10-12
2)LEGNA DA ARDERE	2-4
3) COLTURE DEDICATE	3-5
4)TOTALE	24-30

Disponibilità effettiva

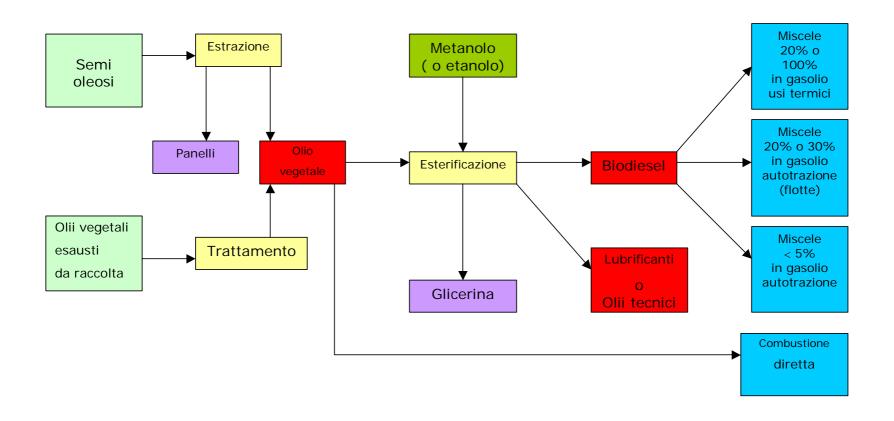
 La disponibilità teorica di biomasse è dunque di circa 24-30 Mtep.

L'impiego attuale è pari a 5 Mtep

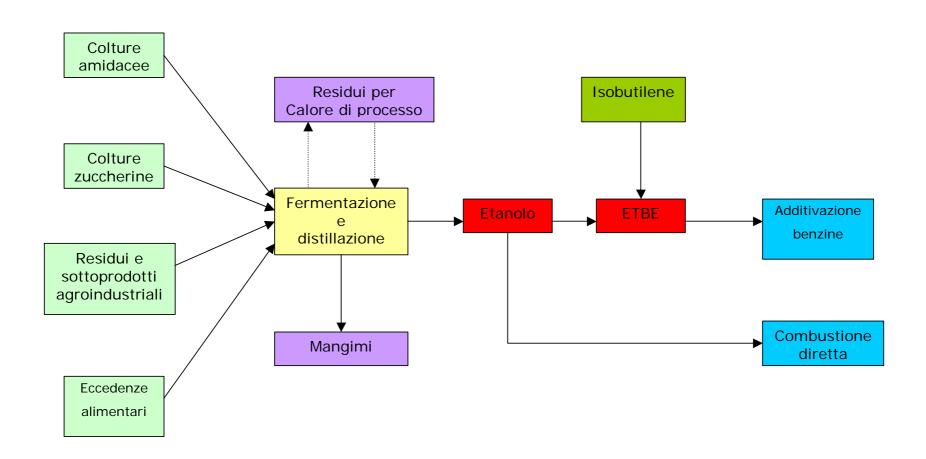
 Esistono dunque ampi margini di miglioramento

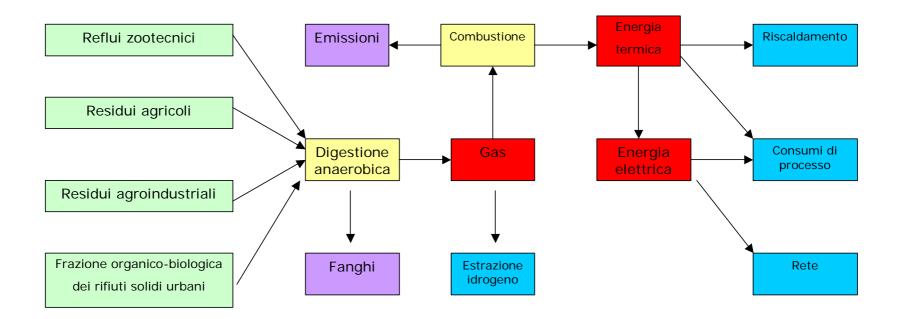

Le Biomasse nella Direttiva Europea sulle FER

Direttiva sulle Fonti Rinnovabili


- L'obiettivo del 17% di impiego di FER è calcolato sul consumo finale lordo
- I criteri di sostenibilità dei biocarburanti sono fissati nella direttiva; la Commissione dovrà approvare i criteri di sostenibilità delle altre biomasse
- I criteri di sostenibilità devono favorire la coltivazione nei terreni incolti e la tutela dei terreni ad alto valore di biodiversità
- Le colture energetiche sono soggette al regime di condizionalità di cui al Reg.CEE 1782/03.
- La riduzione iniziale di CO2 derivante dai biocarburanti deve essere pari almeno al 35% per arrivare al 60% nel 2017.

Biomasse: le filiere


Filiera biomasse solide


Filiera biodiesel

Filiera bioetanolo

Filiera biogas

Biomasse solide: esempi

Cippato

Si definisce "legno sminuzzato", o "chips di legno", il legname in scaglie ottenuto da apposite macchine. Per produrre chips viene utilizzato legno di qualità inferiore, come i residui delle potature boschive, agricole o urbane, le ramaglie e i cimali, oppure ancora i sottoprodotti delle segherie e il legno proveniente da impianti a breve rotazione (SRF).

Pellets

- •Alcune tipologie di scarti dell'industria del legno possono essere utilizzate per produrre un combustibile alternativo ecologico detto "pellet di legno".
- •I pellets sono prodotti con la polvere ottenuta dalla sfibratura dei residui legnosi, la quale viene pressata da apposite macchine in cilindretti che possono avere diverse lunghezze e spessori (1,5-2 cm di lunghezza,6-8 mm di diametro).
- La compattezza e la maneggevolezza danno a questa tipologia di combustibile caratteristiche di alto potere calorifico (p.c.i. 4.000-4.500 kcal/kg) .
- E' molto indicato quindi, per la sua praticità, per piccoli e medi impianti residenziali.

La filiera dell'olio di oliva

Dalla estrazione dell'olio dalle olive si ottengono

- 1)oli di oliva destinati alla alimentazione
- 2)sanse vergini che possono essere destinate alla
- -fertirrigazione nei terreni
- -combustione dopo essiccazione
- -estrazione dell'olio residuo
- 3) Residui della potatura delle olive

Dalla estrazione dell'olio dalle sanse vergini si ottengono

- 1)oli di sansa destinati alla alimentazione o ad uso industriale
- 2)sanse esauste destinate alla combustione o ad uso fertilizzante

Sanse esauste

- Sanse vergini: 1 mil di tonn
- Sanse esauste: 500.000 tonn annue
- Olio di sansa: 4-6 Kg al quintale
- Sansa esausta: il 95% viene utilizzato come combustibile
- Prezzo: 60/70 euro tonn

Le biomasse e i rifiuti

BIOMASSE E RIFIUTI

- La Direttiva 2008/98 del 19 Novembre 2008 esclude dal campo di applicazione della normativa sui rifiuti "il materiale agricolo o forestale naturale non pericoloso utilizzato nella attività agricola, nella silvicoltura o per la produzione di energia da tale biomassa mediante processi o metodi che non danneggiano l'ambiente ne mettono in pericolo la salute umana".
- La nuova definizione di sottoprodotto prevista dalla direttiva comunitaria dovrebbe aiutare a fare ulteriore chiarezza.
- A tal fine possono essere utilizzati i criteri previsti approvati il 21 febbraio 2007 dalla Commissione Europea con una Decisione con la quale sono state definite le Linee guida per la identificazione dei rifiuti e dei sottoprodotti.

Biomasse rifiuti e biomasse prodotti

- Alla luce della nuova direttiva occorre approfondire il trattamento, ai fini della normativa sui rifiuti, di alcuni materiali come
- Ceneri di combustione
- Oli vegetali esausti
- Digestato dal processo di biogas
- Le vinacce esauste sono considerate sottoprodotti (L. 30.12.2008 n. 205)
- Le biomasse combustibili elencate nel DPCM 8 Marzo 2002 non sono trattate come rifiuti.
- Problemi interpretativi sono sorti con riferimento alle ceppe di melo usate nel teleriscaldamento.

II biogas

- Il biogas viene utilizzato prevalentemente per la produzione di energia elettrica o nella cogenerazione anche se esistono interessanti opportunità nel settore dei trasporti (biometano).
- Per la produzione di biogas si utilizzano le frazioni organiche dei rifiuti, i fanghi di depurazione delle acque reflue, le colture non alimentari e i residui zootecnici e della deiezione.
- Nel 2007 la energia primaria da biogas è stata pari a 410 ktep.

OLI ESAUSTI

- Residuano dalla frittura degli oli e grassi vegetali ed animali.
- Il consumo di oli alimentari in Italia è di circa
 1.400.000 tonnellate di cui il 20%(280.000 ton) diventa esausto.
- ❖ Oli residui dalla ristorazione: 60.000 ton annue di cui 36.000 raccolte nel 2007.
- ❖ Oli della utenza domestica: 150.000 ton.
- ❖ Oli della industria alimentare: 50.000 ton.

OLI ESAUSTI DESTINAZIONE

- Lubrificanti 25%
- Biodiesel 50%
- Usi diversi 15%
- Recupero energetico 10%
- Gli oli esausti possono essere una opzione interessante per la produzione di biodiesel.

A tal fine occorre:

- Rendere effettivamente operativo il Consorzio previsto dal DIgs 152/2006
- Incentivare la raccolta "porta a porta"

Biomasse: il regime di sostegno

Energia elettrica

Regime CIP 6/92

 Certificati Verdi Dlgs 79/99 . Decreto Bersani

Regime ex Legge Finanziaria 2008

Certificati Verdi Finanziaria 2008

- Impianti superiori a 1 MW: rilascio dei CV per un periodo di 15 anni. Sono emessi in numero pari alla produzione di energia elettrica da FER x un coefficiente riferito alla tipologia della fonte. Viene assegnato 1 CV x ogni MWh prodotto
- Impianti fino a 1MW: tariffa in conto energia, differenziata per fonte; in alternativa riconoscimento dei CV
- La percentuale obbligatoria per il periodo 2007/2012 viene elevata ogni anno dello 0,75%

Certificati Verdi. Filiera Corta

- Le biomasse agricole prodotte entro un raggio di 70 km e quelle derivanti da accordi di filiera hanno diritto ai CV il cui numero è incrementato del coefficiente 1,8.
- Gli impianti con potenza non superiore a 1 MW in alternativa ai CV possono beneficiare di una tariffa onnicomprensiva di 0,30 euro/ kWh.
- La norma sulla filiera corta sarà modificata in relazione alle obiezioni della Commissione Europea.
- La proposta prevista nel DDL sulla competitività nel settore agroalimentare riconosce una tariffa onnicomprensiva per gli impianti non superore a 1 MW pari a 0,28 euro/kWh.

Autorizzazioni

- Il sistema autorizzatorio è previsto dall'articolo 12 del Dlgs 387 del 2003.
- Il procedimento, che prevede l'intervento della Conferenza di servizi, deve concludersi entro 180 giorni.
- Le semplificazioni previste non risultano pari alle attese.
- Si sente soprattutto la mancanza di linee guida a livello nazionale.

Energia termica

- Gli incentivi sono previsti dai provvedimenti sulla efficienza energetica.
- Sono costituiti dai Titoli di Efficienza Energetica o Certificati Bianchi.
- I CB sono corrisposti a fronte di un risparmio nella energia elettrica, nel gas e nei combustibili solidi e liquidi.

Cogenerazione

• La cogenerazione è la produzione combinata di energia elettrica e calore.

 E' uno degli strumenti più efficaci per perseguire l'incremento della efficienza energetica.

Può essere abbinata al teleriscaldamento

Teleriscaldamento

La esperienza della Valtellina

Consorzio Forestale Alta Valtellina

Costituito nel 1994 il Consorzio Forestale Alta Valtellina fra:

- Comuni di Bormio, Livigno, Valfurva, Valdidentro, Valdisotto e Sondalo (50%)
- Comunità Montana Alta Valtellina (45%)
- Soci privati quali Associazione Impianti a Fune Alta Valtellina. (5%)

Obiettivo primario:

cura e manutenzione del territorio dell'Alta Valtellina

Centrale di Tirano

Potenza Termica

Potenza elettrica

Rete di tubazioni

Utenze Allacciate

Potenza Allacciate

1.770.000 Mc Volumetria Allacciata

Utenze Allacciate

346

765.000 Mc

22,670 Mw Potenza Allacciate

Volumetria Allacciata

Emissioni di Co2 Evitate

Esercizio 2005-2006				
	U.m.	Tirano	Sondalo	Totale
Biomassa Utilizzata	Mcs	120.652	40.699	161.351
Gasolio e/o O.C. risparmiati	Lt/kg	4.900.000	1.900.000	6.800.000
Emissioni co2 evitate	Kg	14.700.000	5.700.000	19.800.000

Valore del gasolio risparmiato	€	6.000.000
Valore del legname utilizzato	€	1:800:000

Importo rimasto interamente in Ambito Locale

PAC

- La attuale Politica Agricola Comune riconosce agli agricoltori
- un sostegno per le colture non food nei terreni abbandonati (set aside) o in alternativa
- un aiuto (credito al carbonio) per le colture energetiche
- Questo regime di sostegno è destinato ad esaurirsi con la nuova PAC.

Biomasse:prospettive

Direttiva FR: Prospettive

- Nella ipotesi di un consumo di energia al 2020 di circa 150 Mtep
- il 17% è pari a 26 Mtep.
- Le biomasse potrebbero assicurare in teoria 16- 18 Mtep
- corrispondenti a 19-24 Mtep di energia primaria.

Premesse

- La direttiva sulle FER subordina l'impiego delle biomasse e dei biocarburanti al rispetto di condizioni di sostenibilità molto severe.
- La preferenza degli operatori del settore è orientata verso l'utilizzo termico.
- Le biomasse residuali e i biocarburanti di 2° generazione possono aumentare il rendimento energetico e la sostenibilità dell'impiego.
- Il quadro normativo è complicato e farraginoso e il regime autorizzatorio insoddisfacente
- L'effetto Nimby non trascura neanche il settore delle biomasse

Conclusioni

Gli obiettivi della direttiva sono ambiziosi. Per raggiungerli occorre

- agevolare i distretti agroenergetici e la filiera corta senza trascurare gli accordi interprofessionali per la promozione delle colture energetiche.
- migliorare il sistema delle autorizzazioni prevedendo criteri uniformi.
- distinguere le biomasse rifiuti dalle biomasse prodotti.
- migliorare il sistema dei CV per la filiera corta.
- favorire gli impieghi che ottimizzano la efficienza energetica come la cogenerazione.
- includere la normativa sulle FER in un Testo Unico che comprenda quanto meno la regolamentazione per i nuovi impianti.
- In conclusione occorre combinare le misure previste con incentivi al risparmio e alla efficienza energetica in modo da ridurre la base sulla quale applicare la percentuale.